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Abstract In this paper, heat transfer characteristics of a two-dimensional steady
hydromagnetic natural convection flow of a micropolar fluid passed a non-linear
stretching sheet taking into account the effects of a temperature-dependent viscos-
ity and variable wall temperature are studied numerically for local similarity solutions
by applying the Nachtsheim-Swigert iteration method. The results corresponding to
the dimensionless temperature profiles and the local rate of heat transfer are displayed
graphically for important material parameters. The results show that in modeling the
thermal boundary layer flow with a temperature-dependent viscosity, consideration of
the Prandtl number as a constant within the boundary layer produces unrealistic results
and therefore it must be treated as a variable rather than a constant within the boundary
layer. The results also show that the local rate of heat transfer strongly depends on the
non-linear stretching index and temperature index.
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List of Symbols

Variables
A Constant
B Constant
B0 Magnetic induction
c Stretching coefficient
cp Specific heat due to constant pressure
Ec Eckert number
Fw Dimensionless suction/injection velocity
f Dimensionless stream function
Grx Local Grashof number
g0 Acceleration due to gravity
g Dimensionless microrotation
j Micro-inertia per unit mass
M Local magnetic field parameter
m Stretching index
N Microrotation component normal to the xy-plane
Nux Local Nusselt number
Prv Variable Prandtl number
Pr∞ Ambient Prandtl number
p Temperature index
Q Local heat source (or sink) parameter
Q0 Heat generation/absorption coefficient
Rex Local Reynolds number
S Coefficient of vortex viscosity
s Microrotation parameter
T∞ Temperature of the fluid within the boundary layer
Tr Reference temperature
Tw Temperature at the surface of the plate
T∞ Temperature of the ambient fluid
u The x-component of the velocity field
v The y-component of the velocity field
v0(x) Suction/injection velocity
x Axis in direction along the surface
y Axis in direction normal to the surface

Greek
β Volumetric coefficient of thermal expansion
γ Richardson parameter
γ ∗ Constant
ρ Fluid density
ρ∞ Density of the ambient fluid
µ Coefficient of dynamic viscosity
µ∞ Coefficient of dynamic viscosity of the ambient fluid
υ Coefficient of kinematic viscosity
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υ∞ Coefficient of kinematic viscosity of the ambient fluid
υs Spin-gradient viscosity
σ ′ Electrical conductivity of the fluid
ψ Stream function
ξ Micro-inertia density parameter
η Similarity variable
θ Dimensionless temperature
θr Variable viscosity parameter
k Thermal conductivity of fluid

 Vortex viscosity parameter

Subscripts
w Surface conditions
∞ Conditions far away from the surface

Superscript
′ Differentiation with respect to η

1 Introduction

The study of boundary layer flow over a moving continuous solid surface is important
as it occurs in several engineering processes, for example, heat-treated materials trav-
elling between a feed roll and a wind-up roll or materials manufactured by extrusion,
glass-fiber and paper production, crystal growing, cooling of metallic sheets or elec-
tronic chips, etc. In these cases, the final product of desired characteristics depends
on the rate of cooling in the process and the process of stretching. The dynamics of
the boundary layer flow over a moving continuous solid surface originated from the
pioneering work of Sakiadis [1] and have become a popular area of research due to its
many engineering and physical applications as mentioned above. Since then, various
aspects of the problem have been investigated by many authors. Erickson et al. [2]
extended the problem of Sakiadis [1] considering wall suction at the moving surface
to investigate its effects on the heat and mass transfer flow. Tsou et al. [3] studied flow
and heat transfer in the boundary layer on a continuous moving surface while Gupta
and Gupta [4] worked on the same problem in an extended view for a linearly moving
surface. Chakrabarti and Gupta [5], Chiam [6], and Chandran et al. [7] have presented
solutions for the flow and heat transfer of electrically conducting fluids over a stretched
surface in the presence of a magnetic field. Vajravelu and Hadjinicalaou [8] have stud-
ied hydrodynamic convective flow along a stretching surface with uniform free stream
in the presence of frictional heating and internal heat generation or absorption. Chen
and Char [9] have investigated the effects of suction and injection on a stretched sur-
face considering variable wall heat flux. Ali [10] investigated the effects of suction
or injection on the thermal boundary layer flow considering a power-law stretched
surface. Chen [11] studied the effects of a magnetic field and suction (or injection) on
convective heat transfer flow of non-Newtonian power-law fluids passed a power-law
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stretched sheet with surface heat flux. Cortell [12–14] studied heat transfer charac-
teristics of Newtonian fluids over a non-linearly stretching sheet considering various
flow conditions.

The microfluids are those which contain micro-constituents and can undergo rota-
tion. These fluids are used in analyzing exotic lubricants, the flow of colloidal sus-
pensions, paints, liquid crystals, animal blood, fluid flowing in brain, turbulent shear
flows, and body fluids both mathematically and industrially. Since the early studies
of Eringen [15,16] many researchers have reported results on micropolar fluids (see
[17–23] and the references therein). Hossain and Chaudhury [24] have analyzed mixed
convection flow of a micropolar fluid over an isothermal plate with a variable spin
gradient viscosity. Rees and Pop [25] have studied free convection boundary layer
flow of micropolar fluids along a vertical plate. Rahman and Sattar [26] studied mag-
netohydrodynamic convective flow of a micropolar fluid past a continuously moving
vertical porous plate in the presence of heat generation or absorption. Rahman and
Sattar [27] further studied their previous problem for unsteady flows with time depen-
dent suction in the presence of radiation. Rahman and Sultana [28] studied radiative
heat transfer flow of a micropolar fluid with variable heat flux in a porous medium.
Rahman [29] studied convective flows of micropolar fluids from radiative isothermal
porous surfaces with viscous dissipation and Joule heating. Very recently Rahman et
al. [30] studied thermo-micropolar fluid flow along a vertical permeable plate with
uniform surface heat flux in the presence of heat generation.

To date, most studies on boundary layers have given priority to the effect of constant
viscosity. But the fluid viscosity changes with temperature. Pop et al. [31] studied the
effect of variable viscosity on flow and heat transfer to a continuous moving flat plate.
Elbashbeshy and Bazid [32] studied the effect of a temperature-dependent viscosity on
heat transfer over a continuous moving surface. Abel et al. [33] studied visco-elastic
fluid flow and heat transfer over a stretching sheet with variable viscosity. Ali [34]
studied the effect of variable viscosity on mixed convection heat transfer along a ver-
tical moving surface. Pantokratoras [35,36] studied the effects of variable viscosity
on the laminar heat transfer flow of Newtonian fluids along a vertical/flat plate for
various flow conditions. Mukhopadhyay [37] studied the effects of variable viscosity
on the MHD boundary layer flow over a heated stretching surface. Alam et al. [38]
studied transient magnetohydrodynamic free convective heat and mass transfer flow
with thermophoresis past a radiative inclined permeable plate in the presence of a var-
iable chemical reaction and temperature-dependent viscosity. Very recently Rahman
and Salahuddin [39] have studied effects of a variable electric conductivity and tem-
perature-dependent viscosity on magnetohydrodynamic heat and mass transfer flow
along a radiative isothermal inclined surface with internal heat generation. All of the
afore-mentioned research studies of variable viscosity are related to Newtonian fluids
over a vertical (or flat) plate or along a linear stretching sheet.

Mohammadein and Gorla [40] studied the flow of micropolar fluids bounded by
a stretching sheet with a prescribed wall heat flux, viscous dissipation, and internal
heat generation. Desseaux and Kelson [41] studied the flow of a micropolar fluid
bounded by a linearly stretching sheet while Bhargava et al. [42] studied the same
flow over a non-linear stretching sheet. Hayat et al. [43] studied mixed convection
flow of a micropolar fluid along a non-linear impermeable stretching sheet. However,
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in their analysis the fluid viscosity as well as the surface temperature remain constant.
To the best of our knowledge, heat transfer in hydromagnetic micropolar fluid flow
considering a temperature-dependent viscosity and variable surface temperature in
the presence of a heat source (or sink) over a non-linearly permeable stretching sheet
remains unexplored.

Therefore, the objective of the present paper is to study the heat transfer character-
istics of hydromagnetic micropolar fluid flow along a non-linear permeable stretched
sheet taking into account a temperature-dependent viscosity with the non-linear var-
iation of the surface temperature. The governing equations are reduced to non-linear
ordinary differential equations which are solved by using the shooting method and the
results are discussed from the physical point of view.

2 Mathematical Formulations

Let us consider a steady, laminar, and two-dimensional flow of a viscous incom-
pressible micropolar fluid of temperature T∞ past a non-linear stretching sheet whose
temperature varies as Tw = T∞ + Ax p, where A is a dimensional constant and p is
an exponent over a permeable surface coinciding with the plane y = 0, the flow being
confined to y > 0. Two equal and opposite forces are introduced along the x-axis
so that the surface is stretched keeping the origin fixed. The origin is located at the
slit through which the sheet is drawn through the fluid medium, the x-axis is chosen
along the sheet, and the y-axis is taken normal to it. The physical regime is illustrated
in Fig. 1. This continuous sheet is assumed to move with a velocity according to the
power law form, u = cxm where c is a dimensional constant known as the stretching
rate and m is an arbitrary positive constant (i.e., not necessarily an integer) known as
the stretching index. A magnetic field of uniform strength B0 is applied in the y-direc-
tion, i.e., normal to the flow direction. There is a suction (or) injection velocity v0(x)
normal to the sheet. It is to be mentioned that the porosity of the sheet, i.e., suction
hole size is taken to be constant.

With the usual boundary layer and Boussinesq approximation, the governing equa-
tions of the problem are governed by (see [25]–[26])

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+v ∂u

∂y
= 1

ρ∞
∂

∂y

[
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]
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∂y
+ g0β (T −T∞)− σ ′B2

0 u

ρ∞
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u
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∂N
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ρ∞ j

∂2 N

∂y2 − S

ρ∞ j

(
2N + ∂u

∂y

)
, (3)

u
∂T

∂x
+ v

∂T

∂y
= k

ρ∞cp

∂2T

∂y2 + Q0

ρ∞cp
(T − T∞)+ µ

cpρ∞

(
∂u

∂y

)2

, (4)

where u, v are the velocity components along x , y co-ordinates, respectively, µ
is the coefficient of dynamic viscosity, S is the microrotation coupling coefficient
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Fig. 1 Flow configurations and
coordinate system
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(also known as the coefficient of gyro-viscosity or as the vortex viscosity), ρ∞ is the
mass density of the ambient fluid, N is the microrotation component normal to the
xy-plane, σ ′ is the magnetic permeability, υs = (µ+ S/2) j is the microrotation vis-
cosity or spin-gradient viscosity, j is the micro-inertia density, T is the temperature
of the fluid in the boundary layer, T∞ is the temperature of the ambient fluid outside
the boundary layer, cp is the specific heat of the fluid at constant pressure, k is the
thermal conductivity, and Q0 is the heat generation or absorption constant.

Boundary conditions of the above problem are

u = cxm, v = ± v0(x), N = −s ∂u
∂y , T = Tw(= T∞ + Ax p) at y = 0,

u = 0, N = 0, T = T∞ as y → ∞.

}
(5)

Positive and negative values for v0 indicate blowing and suction, respectively, while
v0 = 0 corresponds to an impermeable sheet. In this problem, we have confined our
attention to the suction or injection of the fluid through the stretching sheet keeping
the suction porosity constant. When the microrotation parameter s = 0, we obtain
N = 0 which represents a no-spin condition, i.e., the microelements in a concentrated
particle flow close to the wall are not able to rotate as stated by Jena and Mathur
[18]. The case s = 0.5 represents vanishing of the anti-symmetric part of the stress
tensor and represents weak concentration. For this case Ahmadi [17] suggested that
in a fine particle suspension the particle spin is equal to the fluid velocity at the
wall. The case corresponding to s = 1 is representative of turbulent boundary layer
flows.
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2.1 Non-dimensionalization

We introduce the following non-dimensional variables:

η= y

√
c

υ∞
x

m−1
2 , ψ =

√
cυ∞xm+1 f (η) , N =

√
c3

υ∞
x

3m−1
2 g (η) , θ = T − T∞

Tw − T∞
,

⎫⎬
⎭
(6)

where ψ is the stream function.
Since u = ∂ψ

∂y and v = − ∂ψ
∂x we have from Eq. 6,

u = cxm f ′(η)
v = −√

cυ∞x
m−1

2
(m+1

2 f (η)+ m−1
2 η f ′(η)

)
}
. (7)

Here f is a non-dimensional stream function and the prime symbol denotes differen-
tiation with respect to η.

For a viscous fluid, Ling and Dybbs [44] suggested a temperature-dependent vis-
cosity of the form,

µ = µ∞
1 + γ ∗ (T − T∞)

, (8)

where γ ∗ is the thermal property of the fluid. Equation 8 can be rewritten as

1

µ
= B (T − Tr) , (9)

where

B = γ ∗

µ∞
and Tr = T∞ − 1

γ ∗ . (10)

In the above Eq. 10, both B and Tr are constants and their values depend on the
reference state and γ ∗ . In general, B > 0 for liquids, and B < 0 for gases. Typical
values of γ ∗ and B for air are γ ∗ = 0.026240 and B = −123.2 (see Weast [45]).

The dimensionless temperature θ can also be written as

θ = T − Tr

Tw − T∞
+ θr, (11)

where θr = Tr−T∞
Tw−T∞ = − 1

γ ∗ (Tw−T∞) = constant, and its value is determined by the vis-
cosity/temperature characteristics of the fluid under consideration and the temperature
difference 
T = Tw − T∞. Using Eq. 11, Eq. 8 becomes

µ = µ∞
(

θr

θr − θ

)
. (12)
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Now substituting Eqs. 6, 7, and 12 into Eqs. 2–4 we obtain the following non-
dimensional differential equations,

(
θr

θr − θ
+


)
f ′′′+m+1

2
f f ′′ − m f ′2+ θr

(θr − θ)2
θ ′ f ′′+
g′ − M f ′+γ θ = 0

(13)(
θr

θr − θ
+ 1

2



)
ξg′′ −


(
2g + f ′′) − ξ

(
3m − 1

2
f ′g − m + 1

2
g′ f

)
= 0 (14)

θ ′′ + Pr∞
(

m + 1

2
f θ ′ − p f ′θ

)
+ Pr∞Qθ + Pr∞

θr

θr − θ
Ec f ′′2 = 0 (15)

The dimensionless parameters appeared in Eqs. 13–15 are defined as follows:
 = S
µ∞

is the vortex viscosity parameter, M = σ ′ B2
0

ρ∞c x1−m is the local magnetic field parameter,

ξ = jc
υ∞ xm−1 is the local spin gradient viscosity parameter, Ec = (cxm )2

cp(Tw−T∞) is

the local Eckert number, Pr∞ = µ∞cP
k is the ambient Prandtl number, Q = Q0x1−m

ρ∞cpc

is the local heat source (or sink) parameter, γ = Grx
Rex

2 is the Richardson parameter

of which Grx = g0β(Tw−T∞)x3

υ∞2 is the local Grashof number, and Rex = cxm+1

υ∞ is the
local Reynolds number.

The Prandtl number is a function of viscosity, and as the viscosity varies across
the boundary layer, the Prandtl number varies, too. The assumption of a constant Pra-
ndtl number inside the boundary layer may produce unrealistic results. Therefore, the
Prandtl number related to the variable viscosity is defined by

Prv = µcp

κ
=

(
θr
θr−θ

)
µ∞cp

κ
=

(
θr

θr − θ

)
Pr∞. (16)

At the surface (η = 0) of the sheet, this can be written as

Prw =
(

θr

θr − 1

)
Pr∞. (17)

In light of the above discussions, using Eq. 16 the non-dimensional temperature
Eq. 15 can be rewritten as

θ ′′ +Prv

(
1 − θ

θr

) (
m + 1

2
f θ ′ − p f ′ θ

)

+PrvQ

(
1 − θ

θr

)
θ + PrvEc f ′′2 = 0. (18)

From Eq. 16 it can be seen that for large θr, i.e., θr → ∞, the variable Prandtl
number Prv is equal to the ambient Prandtl number Pr∞, in that case, Eq. 18 reduces
to Eq. 15. For η → ∞; θ(η) becomes zero; therefore, Prv equals Pr∞ independent
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of the values of θr. Equation 18 is the corrected non-dimensional form of the energy
equation for modeling thermal boundary layer flows with a temperature-dependent
viscosity.

The corresponding boundary conditions take the form,

f = Fw, f ′ = 1, g = −s f ′′, θ = 1 at η = 0,
f ′ = 0, g = 0, θ = 0 as η → ∞.

}
(19)

where Fw = ± v0(x)√
cυ∞ m+1

2 x
m−1

2
is the suction or injection parameter. It should be noted

that M , ξ , Q, Ec, γ , and Fw are functions of x ; therefore, a local similarity approach
(Kays and Crawford [46]) is applied to solve the governing Eqs. 13, 14, and 18. Similar
studies were made by many authors (see [26], [28–30], [34], Raptis [47], El-Arabawy
[48], Aziz [49]) and have been adopted in the present analysis. Therefore, the differen-
tial Eqs. 13, 14, and 18 are locally similar. The above-noted systems have been solved
numerically for various values of the parameters entering into the problem.

2.2 Local Nusselt Number

The local Nusselt number (or rate of heat transfer) can be defined as

Nux = −(Rex )
1
2 θ ′(0). (20)

Thus, from Eq. 20 we see that the local Nusselt number Nux is proportional to −θ ′(0).
Hence, the numerical values of Nux (Rex )

− 1
2 are calculated from Eq. 20 and are shown

in Figs. 8–12. Since the solutions are locally similar, it is to be mentioned that the
dimensionless quantity Nux is determined locally at any x-station and the upstream
history of the flow is ignored, except as it influences the similarity variable.

2.3 Numerical Solutions

The system of non-linear ordinary differential Eqs. 13, 14, and 18 together with the
boundary conditions, Eq. 19, are locally similar and solved numerically using the Nac-
htsheim-Swigert [50] shooting iteration technique (guessing the missing value) along
with the sixth-order Runge-Kutta initial value solver.

The boundary conditions, Eq. 19, associated with the non-linear ordinary differ-
ential Eqs. 13, 14, and 18 are the two-point asymptotic class, that is, values of the
dependent variable are specified at two different values of the independent variable.
Specification of an asymptotic boundary condition implies that the first derivative
(and higher derivatives of the boundary layer equations, if they exist) of the dependent
variable approaches zero as the outer specified value of the independent variable is
approached.

For the method of numerically integrating a two-point asymptotic boundary-value
problem of the boundary-layer type, the initial-value method is similar to an initial-
value problem. Thus, it is necessary to estimate as many boundary conditions at the
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surface as were (previously) given at infinity. The governing differential equations
are then integrated with these assumed surface boundary conditions. If the required
outer boundary condition is satisfied, a solution has been achieved. However, this is
not generally the case. Hence, a method must be devised to estimate logically the new
surface boundary conditions for the next trial integration. Asymptotic boundary value
problems such as those governing the boundary-layer equations are further compli-
cated by the fact that the outer boundary condition is specified at infinity. In the trial
integration, infinity is numerically approximated by some large value of the indepen-
dent variable. There is no a priori general method of estimating these values. Selecting
too small a maximum value for the independent variable may not allow the solution to
asymptotically converge to the required accuracy. Selecting a large value may result
in divergence of the trial integration or in slow convergence of surface boundary con-
ditions. Selecting too large a value of the independent variable is expensive in terms
of computer time.

Nachtsheim-Swigert developed an iteration method to overcome these difficulties.
In Eq. 19 there are three asymptotic boundary conditions and, hence, three unknown
surface conditions such as f ′′(0), g′(0), and θ ′(0).

Within the context of the initial-value method and the Nachtsheim-Swigert iteration
technique, the outer boundary conditions may be functionally represented as

Y j (ηmax) = Y j
(

f ′′(0), g′(0), θ ′(0)
) = δ j , j = 1, 2 · · · 6, (21)

where Y1 = f ′, Y2 = g, Y3 = θ , Y4 = f ′′, Y5 = g′, and Y6 = θ ′. The last three of
these represent asymptotic convergence criteria.

Choosing f ′′(0) = y1, g′(0) = y2, and θ ′(0) = y3 and expanding in a first-order
Taylor series after using Eq. 21 yields

Y j (ηmax) = Y j,C (ηmax)+
3∑

i=1

∂Y j

∂yi

yi = δ j , j = 1, 2 · · · 6 (22)

where subscript ‘C’ indicates the value of the function at ηmax determined from the
trial integration.

Solution of these equations in a least-squares sense requires determination of the
minimum value of

Error =
6∑

j=1

δ2
j (23)

with respect to yi (i = 1, 2, 3).
Now differentiating Error with respect to yi , we obtain

6∑
j=1

δ j
∂δ j

∂yi
= 0. (24)
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Substituting Eq. 22 into Eq. 24 after some algebra, we obtain

3∑
k=1

aik
yk = bi , (25)

where

aik =
6∑

j=1

∂Y j

∂yi
.
∂Y j

∂yk
, bi = −

6∑
j=1

Y j,C
∂Y j

∂yi
; i, k = 1, 2, 3. (26)

Now solving the system of linear Eq. 25 using Cramer’s rule, we obtain the missing
(unspecified) values of yi as

yi ∼= yi +
yi . (27)

Thus, adopting the numerical technique aforementioned along with the sixth-order
Runge-Kutta initial value solver, the solutions of the non-linear ordinary differential
Eqs. 13, 14, and 18 with boundary conditions, Eq. 19, are obtained as a function of
the coordinate η for various values of the material parameters.

In all cases a step size of 
η = 0.001 was selected that satisfied a convergence
criterion of 10−6. The value of η∞ was found for each iteration loop by the statement
η∞ = η∞ +
η. The maximum value of η∞ to each group of the prescribed parame-
ters is determined when the value of the unknown boundary conditions at η = 0 does
not change in the successful loop of iteration with an error of less than 10−6.

With the three different step sizes 
η = 0.01, 
η = 0.001, and 
η = 0.005, we
have verified the effects of the step size on the velocity, temperature, and concentra-
tion profiles, and in each case, we found excellent agreement among the results. It was
found that 
η = 0.001 provided sufficiently accurate results, and further refinement
of the grid size was therefore not warranted.

To assess the accuracy of the present code, we compare our quantitative results for
a Newtonian fluid along a continuously moving isothermal heated plate with those of
Pop et al. [31] and Ali [34] for their zero buoyancy (λ = 0) case. Thus, setting
 = 0,
ξ = 0, γ = 0, M = 0, Q = 0, Ec = 0, m = 0, and p = 0 (using the same expression
of η defined by [31] and [34] with rescaled current Eqs. 13 and 18 to be consistent),
we have calculated values of f ′′(0) and θ ′(0). For the shake of comparison and to be
consistent with [31] and [34] (where the Prandtl number is considered as constant), we
also considered the Prandtl number as a constant within the boundary layer. Tables 1
and 2 demonstrate the comparison of the data produced by the present code and those
of Pop et al. [31] and Ali [34]. In fact, the results show close agreement, and hence
justify the use of the present code.
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Table 1 Comparisons of f ′′(0) to previously published data at Pr∞ = 0.7 and 
 = 0, ξ = 0, γ = 0,
M = 0, Q = 0, Ec = 0, m = 0, p = 0 for different values of θr using the same expression of η = y

x Re1/2

defined by [31] and [34] with rescaled Eqs. 13 and 18 to be consistent

θr Pop et al. [31] Ali [34] Present results

−8.0 −0.4773578 −0.4763230 −0.4763475

−0.1 −1.5061732 −1.4965150 −1.4965351

−0.01 −4.4856641 −4.4683560 −4.4577559

8.0 −0.4089153 −0.4083475 −0.4083562

Table 2 Comparisons of θ ′(0) as in Table 1

θr Pop et al. [31] Ali [34] Present result

−8.0 −0.3493189 −0.3432339 −0.3436723

−0.1 −0.2191391 −0.1652394 −0.1661476

−0.01 −0.1544918 −0.0561845 −0.0764055

8.0 −0.3605226 −0.3555822 −0.3560031

3 Numerical Results and Discussion

For the purpose of discussing the results, the numerical calculations are presented in
the form of non-dimensional temperature profiles. In the calculations the values of
the parameters, namely, the Richardson parameter γ , variable Prandtl number Prv ,
viscosity parameter θr, magnetic field parameter M , heat source (or sink) parameter
Q, Eckert numberEc, suction (or injection) parameter Fw, stretching index m, and
temperature index p are varied. The choice of the values of the parameters was dictated
by the values chosen by previous investigators. Because of the lack of experimental
data for the vortex viscosity parameter 
, the micro-inertia density parameter ξ , and
the microrotation parameter s, suitable representative values are chosen in order to
determine the polar effects on the flow characteristics. When viscosity does not depend
on the temperature values of the ambient Prandtl number, Pr∞ = 0.73, 2.97, and 7
correspond to air, methyl chloride, and water. When the viscosity depends on the tem-
perature these values at the surface of the sheet (η = 0) and for θr = 2 correspond
to 1.46, 5.94, and 14. Therefore, in the simulation the values of the variable Prandtl
number are chosen as 1.46, 5.94, and 14. Since γ = Grx

Rex
2 represents the ratio of

the buoyancy forces to the inertial forces, γ = 1 corresponds to mixed convection,
γ � 1 corresponds to forced convection, and γ � 1 corresponds to free convection.
Physically γ < 0 corresponds to an externally heated sheet and γ > 0 corresponds
to an externally cooled sheet while γ = 0 corresponds to the absence of free convec-
tion currents. Since the free convection problem is considered, only a positive large
value of γ is considered. The default values of the parameters are chosen as γ = 10,
Prv = 1.46, θr = 2, M = 1, Q = 0.5, Ec = 0.2, m = 1.5, p = 1.5,
 = 0.5, ξ = 1,
and s = 0.5, unless otherwise stated.
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Fig. 2 Dimensionless temperature profiles for different values of Prv

Figure 2 shows the temperature profiles for different values of the variable Prandtl
number Prv for a cooled surface for both cases of fluid suction and injection. As the
Prandtl number increases, viscous forces tend to suppress the buoyancy forces and
cause the temperature in the thermal boundary layer to decrease. It is also noticeable
that for a fixed value of the Prandtl number, the temperature corresponding to the case
of fluid suction is lower compared to the case of fluid injection. That is, the thickness
of the thermal boundary layer is higher for fluid injection than for fluid suction.

In Fig. 3 we have varied the viscosity parameter (θr) keeping the values of all other
parameters fixed. Figure 3 reveals that the temperature profile as well as the thick-
ness of the thermal boundary layer decrease when θr increases for both cases of fluid
suction and injection.

Figure 4 explains the variation of the heat generation (or absorption) parameter (Q)
on the temperature profiles. Because of the presence of heat generation, it is apparent
from this figure that there is an increase in the thermal state of the fluid; as a conse-
quence, we observe that temperature profiles increase as Q increases for both cases
of fluid suction and injection. But the opposite effect is observed for the case of heat
absorption. The thickness of the thermal boundary layer is higher for fluid injection
than for fluid suction for both cases of heat generation or absorption.

Figure 5 illustrates the dimensionless temperature profiles for different values of the
viscous dissipation parameter (or Eckert number) Ec. From this figure it can be seen
that temperature profiles have an increasing effect for increasing values of Ec. There-
fore, increasing the Eckert number broadens the thickness of the thermal boundary
layers.

Figure 6 depicts the effects of the stretching index (m) on the temperature profiles.
It is found from Fig. 6 that temperature profiles decrease quite rapidly with an increase
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Fig. 4 Dimensionless temperature profiles for different values of Q

of m for the case of fluid suction while it increases for the case of fluid injection. It
is also noticeable that for fluid injection temperature profiles crossover away from
the surface of the plate and decrease with an increase of m. The value m = 0 repre-
sents a uniformly moving surface. From this figure we also find that heat transfer in a
uniformly moving surface is higher than in a stretched surface.
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Fig. 6 Dimensionless temperature profiles for different values of m

Figure 7 presents the variation of the temperature index (p) on the temperature
profiles. From here we see that temperature profiles decrease very rapidly in the case
of fluid injection compared to the case of fluid suction with the increase of p. The value
p = 0 represents a uniformly heated surface. Figure 7 also shows that the temperature
in a uniformly heated surface is higher than in a variably heated surface.
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Fig. 7 Dimensionless temperature profiles for different values of p

Figure 8 shows the local rate of heat transfer (Nux Re−1/2
x ) for different values

of the Richardson parameter γ and Prandtl number Prv . This figure reveals that for
a fixed Prandtl number value the local heat transfer coefficient increases with the
increase of the Richardson parameter for both cases of fluid suction and injection. On
the other hand, values of Nux Re−1/2

x increase very rapidly with the increase of the
Prandtl number for the case of fluid suction compared to that of fluid injection. Thus,
applying suction and (or) injection, one can significantly control the heat transfer from
the heated surface to the fluid.

Figures 9 and 10 show the variation of Nux Re−1/2
x for different values of heat

generation (or absorption) parameter Q and viscosity parameter θr. From these fig-
ures we found that for a fixed value of the viscosity parameter the local rate of heat
transfer from the surface to the fluid decreases with the increase of the heat generation
parameter for both fluid suction and injection. This is due to the fact that as heat is gen-
erated, the thermal state of the surrounding fluid increases; as a consequence, the rate
of heat transfer from the surface to the fluid decreases. The opposite trend is observed
for the case of heat absorption. The increase in Nux Re−1/2

x is quite significant for
the case of heat generation compared to that for heat absorption. Figure 9 shows that
for a positive value of θr = 2, Nux Re−1/2

x decreases by approximately 33.5 % in the
case of fluid suction while the corresponding decrease is approximately 79 % for the
case of fluid injection when Q increases from 0 to 2. Whereas Fig. 10 reveals that for
a negative value of θr = −2, Nux Re−1/2

x decreases by approximately 32.4 % in the
case of fluid suction while the corresponding decrease is approximately 96.5 % for
the case of fluid injection when Q increases from 0 to 2. These figures also show that
values of Nux Re−1/2

x increase with the increase of the viscosity parameter θr for both
fluid suction and injection. At the instant of Q = 2, the value of Nux Re−1/2

x increases

123



Int J Thermophys (2009) 30:1649–1670 1665

2 4 6 8 10
0

1

2

3

4

5

6

7

N
u x

R
e x-1

/2

γ

Prv

Prv

Prv

F

F

= 5.94

w = 1.0

w = -1.0

= 1.46

= 1.46, 5.94

Fig. 8 Local Nusselt number for different values of γ and Prv

-2 -1 0 1 2
0

1

2

3

4

N
u x

R
e x-1

/2

Q

F
F

θ r = 2, 5

θ r = 2, 5

w = 1.0

w = -1.0

Fig. 9 Local Nusselt number for different values of Q and θr > 0

by approximately 62.6 % for the case of fluid suction while it increases by 312.4 %
for the case of fluid injection when the values of θr increase from 2 to 5. These figures
also reveal that when θr is positive; the increasing effect of θr (>0) on Nux Re−1/2

x
is quite significant compared to θr (<0) for the case of heat generation. The opposite
effect is observed for the case of heat absorption.
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Figure 11 presents the variation of Nux Re−1/2
x for different values of the Eckert

number and the magnetic field parameter for both cases of fluid suction and injec-
tion. From here we found that for a fixed value of M, the local Nusselt number
Nux Re−1/2

x decreases with the increase of Ec for both cases of fluid suction and
injection. This figure also reveals that the local Nusselt number decreases with the
increase of M for all values of Ec in the case of fluid suction, while for the case
of fluid injection, the local Nusselt number decreases for Ec < 0.4 (not precisely
determined). Outside this range of Ec, the local Nusselt number increases with the
increase of M for fluid injection.

Figure 12 shows the local Nusselt number for various values of the stretching index
m and temperature index p for both the cases of fluid suction and injection. From
here we found that the value of Nux Re−1/2

x increases with the increase of the velocity
index as well as the temperature index for fluid suction. The opposite trend is observed
for the case of fluid injection.

Figure 13 depicts the variable Prandtl number within the boundary layer for various
values of the viscosity parameter θr at an ambient Prandtl number Pr∞ = 0.73. From
this figure we see that Prv asymptotically converges to the value of Pr∞ as η → ∞.
It is also notable that at the surface of the sheet Prv approaches Pr∞ for large values
of θr. For θr > 0; Prv decreases with the increase of θr while an opposite effect is
observed for θr < 0.

In Table 3 we have presented the local Nusselt number for various values of the
viscosity parameter θr while considering the Prandtl number to be constant (using
energy Eq. 15) and variable (using energy Eq. 18) within the boundary layer. Since
the viscosity is a function of the temperature, so is the Prandtl number. For θr ∈ (0, 1],
no solutions can be found. From this table it is clear that for very large values of θr
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(whether positive or negative), absolute errors between the produced results differ by
less than 1 %. For θr → 1+, the absolute error between the results is markedly large,
but for negative values of θr → 0−, the absolute error between the results becomes
enormously large. At θr = 1.001 the absolute error between the results is more than
72 %, whereas for θr = −0.05, this becomes more than 580 %. These results produce
clear evidence for modeling thermal boundary layer flow with a temperature-depen-
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Table 3 Values of Nux Re−1/2
x for different values of θr

θr Nux Re−1/2
x Absolute error =

∣∣∣ i−ii
i

∣∣∣ × 100

(i) For constant
Prandtl number

(ii) For variable
Prandtl number

−100.0 1.605300 1.611378 <1

−10.0 1.606471 1.666908 3.76

−2.0 1.611352 1.906984 18.35

−0.5 1.625711 2.743549 68.76

−0.1 1.657920 6.686586 303.31

−0.05 1.670647 11.361811 580.10

1.001 1.590837 0.922775 72.40

1.01 1.590960 0.929753 41.56

1.2 1.593224 1.048450 34.19

2 1.598177 1.282450 19.76

10 1.603833 1.542617 3.82

100 1.605036 1.598951 <1

∞ 1.605168 1.605168 0

dent viscosity while considering the Prandtl number as a constant within the boundary
layer may produce unrealistic results. In Table 3, θr → ∞ indicates that the viscosity
is independent of temperature, i.e., constant. Thus, the local rate of heat transfer in
a fluid of constant viscosity is higher than in a fluid of variable viscosity when θr is
positive. An opposite result is found for negative values of θr.
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4 Conclusions

In this paper, the problem of steady, laminar, hydromagnetic free convection flow of
a micropolar fluid past a non-linear stretching sheet with variable viscosity and var-
iable wall temperature in the presence of heat generation (or) absorption is studied
numerically. Using similarity transformations the governing equations of the problem
have been transformed into non-linear ordinary differential equations and solved for
local similar solutions by using the Nachtsheim-Swigert shooting iteration technique.
From the present study the following conclusions can be drawn:

1. The local rate of heat transfer (Nux Re−1/2
x ) increases with an increase of the Rich-

ardson parameter γ , variable Prandtl number Prv , viscosity parameter θr, whereas
it decreases with an increase of the heat generation parameter Q and Eckert number
Ec for both the cases of fluid suction and injection.

2. The local rate of heat transfer increases with the increase of the stretching index m
and temperature index p for the case of suction. An opposite effect is observed for
the case of fluid injection.

3. The local rate of heat transfer decreases with the increase of the magnetic field
parameter M for the case of fluid suction. But for the case of fluid injection,
Nux Re−1/2

x decreases with the increase of M for Ec < 0.4, and beyond this
value of Ec, Nux Re−1/2

x increases with the increase of M .
4. The absolute error in the Nusselt number is enormously large for lower negative

values of the viscosity parameter θr if the Prandtl number is considered as a constant
rather than a variable inside the boundary layer.

5. For modeling thermal boundary layers with a temperature-dependent viscosity, the
Prandtl number must be treated as a variable inside the boundary layer.

6. The local rate of heat transfer in a fluid of constant viscosity is higher than that in a
fluid of a temperature-dependent viscosity when θr is positive, whereas an opposite
result is found for θr < 0.
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